JAEA-Conf 2015-002

3.2.14

CombLayer : A fast parametric MCNP(X) model

constructor

Stuart Ansell
Rutherford Appleton Labs, Chilton, Didcot OX11 0QX, U.K.

E-mail: stuart.ansell@stfc.ac.uk

Abstract.

MCNP(X) Monte Carlo neutronic modeling has now reached the level that large simulations
of spallation sources starting from protons on target and recording neutrons at instrument
detectors or outside biological shielding can simulated in one model. These models have the
majority of the engineering aspects (e.g. pipework) described in detail. However, directly
building an MCNP(X) input for a large geometry is highly time consuming and almost all the
features of MCNP(X) that allow that process to be made simpler for the user (e.g. universes,
lattices etc.) increase the simulation runtime by orders of magnitude.

CombLayer is a program designed to begin to overcome this problem. It ignores all the
helper options in MCNP(X) and treats MCNP(X) as an assembler. Assembly-like geometry
components can be rotated and repositioned, linked together, intersected and joined using a
linkage system. Thus rapid production of complex MCNP(X) geometries that depend on a
long list of variables and module flags, and the facilitation of tallies with appropriate variance
reduction is possible.

CombLayer has built full models of facilities, with examples from ISIS TS1/TS2, SNS, ESS,
Delft etc, typically with >2000 variables that can be changed within their range to carry out
optimizations. Additionally, the object oriented form of all model components allows exchange of
most parts to done with a simple command line flag. This facilitates “shopping list comparisons”
e.g. a set of different cold moderators to be compared.

The code is publicly available at https://github.com/SAnsell/ CombLayer.

1. Introduction

The Monte-Carlo MCNP(X) code [1] has been a mainstay of the neutronic community for many
years and used in the design of both spallation sources such as the SNS and ISIS-TS2 as well as
reactors e.g. ILL and Delft [2, 3, 4]. For the last 20 years there has been a steady increase in the
realism and complexity of the models used, going from simple cubic or cylindrical moderators
in a simple reflector to fully engineered moderators including pipework, pressure curvatures and
corner rounds and detailed from the target to the instruments detectors. This has resulted in
the number of objects and surfaces increasing from the 10s to the 100,000s. However, during the
same time the mechanisms within MCNP(X) which allow the input of that geometry have not
changed significantly. Surfaces are still constructed from simple quadratic infinite surfaces and
the later addition of macrobodies have only added extremely primitive, non-extensible shaped
surface groups e.g. the cuboid. Objects are constructed from a set of boolean operations on
surfaces, the object must be completely defined and it not sufficient to allow previously defined
objects to cut or overlap the new object.

- 148 -



JAEA-Conf 2015-002

S ! Variance MCNP
B 3 _ wp~Reductio Output
Cmdline ©~
args

Figure 1. Diagram of the procedural flow and object construction within a CombLayer runtime
execution. The green dashed arrows represent possible user input. The red solid arrows represent
definitive directions of construction. First components and objects are built, simulation setup
is carried out and then onwards to validity or variance reduction and output.

MCNP(X) suffers an additional problem when dealing with large assemblies, in that both the
complementary operator and the universe system are not restricted. Consider three objects: A
in B in C. If B is constructed using the complement of the outside of A (#A), and C is likewise
constructed from B (#B), at runtime MCNP(X) needs to calculate all the surfaces in A, B
and C to calculate points and lines in C. In large assemblies, this cascade dramatically reduces
runtime performance or greatly increases the complexity of the modeling process.

The program CombLayer is being developed to alleviate some of these problems and in
addition to be a basis program that can be extended/modified by others to be further improved.

1.1. CombLayer Architecture

The outline CombLayer architecture is shown in figure 1. The program requires users to
effectively write their geometry into a C+4 construction system. This is compiled into the
program before running CombLayer. The output can then be influenced by a Turing complete
variable system which can be set via XML files or via the command line

2. Object Construction
Volume objects within CombLayer are still constructed with a complete boolean volume
description of each space in the same way that MCNP(X) treats each individual volume.
Volumes are defined by combining literals (unique surfaces) with simple union and intersection
(operations) to make a volume rule set. This is called a function within logic mathematics.
All CombLayer volumes are initially pre-processed to remove non-unique surfaces and opposite
plane surfaces against a global surface list. Then complementary components are expanded out.
CombLayer stores the object function as a binary tree structure. It is created by having
the top node either an intersection or a union; this descends to other intersections or unions,
before the leaf nodes are surface literals. The tree is partially sorted such that the minimum

- 149 -



JAEA-Conf 2015-002

number of changes of boolean type (intersection/union) occur between the head node and the
surface literal, which implies that intersections and unions are gathered together. This allows
the designation of two terms surface level, which indicates how many boolean operator changes
that occur between the tree headnode and the point a surface is found, and level object which is
the volume described by only those surface that share one particular surface level. The latter is
commonly used for wrapping an object, finding its external surface etc.

CombLayer handles all of this internally, the only requirement from the user is to define the
object either using the traditional MCNP(X) method, or as a composite object.

2.1. Object Organization

CombLayer allows the construction of objects within C4++ classes that inherit from two base
classes: FizedComp and ContainedComp or further derived versions of these two classes. The
group of MCNP(X) objects built by this class is called a component.

Components are typically constructed in one class with this dual inheritance. The component
is then automatically registered with the global (singleton) object register. The object register
allows each component to be constructed as if it were an isolated simple MCNP(X) model.
Surface numbers and objects numbers are automatically taken care, e.g. a cylinder component
can be built with surfaces 1 2 -3 regardless of how many cylinder components or other
components are required.

FizedComp provides an origin and an orthogonal basis set (X/Y/Z) that the geometry is
being constructed with, which allows the object to be rotated and shifted in any direction, but
constructed in a simple way. However, the real advantage of FizedComp is the provision of link
points. A link point is a point on a surface which has an external axis associated with it. For
example, a 4x4x4cm cube with the surface pz 2 might have a link point on the surface at (0,0,2)
with link direction (0,0,1). If the origin of the FizedComp is moved, or the object is rotated,
these link points also follow the rotations/translations. This gives the advantage that when an
new object is constructed, the new object is constructed relative to the direction and position of
an existing link point. For example, a line of cubes can be created by constructing each (except
the first) relative to an external link point. If the initial cube is rotated/shifted the whole line
moves, but if one of the later cubes is shifted /rotated only the remaining cubes are reorientated.
Further, since the link point provides a common surface interface, the cubes could be joined
using this, so in the last case, the rotating cube becomes extended.

ContainedComp provides support for the external boundary of the a collection of MCNP(X)
objects. It is an attempt to mitigate the cascade problem of complementary objects and universes
within MCNP(X) whereby a sequence of inclusions between object A, B, C... will result in a
MCNP(X) runtime degradation. The use of ContainedComp should give the same geometric
result but not result in the runtime penalty.

When a component is built, an external boundary of surfaces is defined. The external
boundary should wrap the volume of the component. In its simplest form, it can be constructed
as a union of all the objects within the component, but commonly an obvious outer surface
is available. For more complex object a ContainedGroup is available. This external boundary
is not an object and does not appear within the MCNP(X) output model, but it can be used
when a component could reside within another object, or if two components get so close that
an intersection could take place.

ContainedComp is provided with a number of routines that make it more useful in building
objects. First, if an intersection is certainly going to happen between two components (e.g. a
moderator within a reflector), then the ContainedComp can be added directly to the containing
component. Much more likely, is that the ContainedComp will be included in some (unknown
number) of the objects that make up another component. This is carried out by using an
appropriate attachSupport call, which automatically checks each of the objects within the

- 150 -



JAEA-Conf 2015-002

components to see if they overlap any part of the ContainedComp’s boundary. If that does
happen then the full excluded boundary is added to the individual object. It is assumed that
the object optimization will remove unnecessary surfaces later.

Figure 2. The intersection be-
tween an object components and a
ContainedComp. Objects in blue
(E/C/D) are the only object that
get modified and they end up with
only two of the surfaces (in orange)
of the original ContainedComp

Figure 2 shows the consequence of the intersection of a ContainedComp with a different
component after the object optimization process. It can be seen that ContainedComp are
reductive, so the intersection of a ContainedComp with a component does not affect the objects
own ContainedComp, so a sequence of component intersections are constructed, where a change
to one component’s composition or boundary never requires changes to another component.

The main drawback is runtime speed of building the models. In principle, it would be
possible to intersect every component with every other component, but when developing models
it is highly advantageous to keep the model building phase down to a few seconds. Thus a
positive component-component test system is used, where the user has to state (in code) which
objects are going to be tested together.

2.2. Object Optimization

During the MCNP(X) path tracking routines, the largest areas of CPU expenditure are: (i)
calculating the side of a surface relative to a point, (ii) the intersection point of a line to a
surface and (iii) exiting/entrance condition of a line on a surface intersection. All three of these
can be dramatically reduced by reducing the number of literals (unique surfaces) within a volume
description. If this can be achieved, both the overhead in calculating the object and number
of other cells that need to be investigated when calculating the exit of a track are reduced. It
is this latter overhead that can increase very dramatically as the complexity of the model is
increased, with particular note to pipework and other connectible items.

o false a true Figure 3. The planes a and b are
b false b true parallel so there is an impled relation
ship between them. The sense of the
planes are arbitarily decided to be true

a b towards the right.

CombLayer provides two operations for improving the number of literals; both need the
pre-operational step of expanding the object function based on absolute implications. In this
process, all pairs of literals (a,b) which imply the other are expanded, e.g. the two parallel planes
shown in figure 3 have the property that if plane b is true, then plane a is also true, and likewise
if a is false b is also false. This is expressed in standard boolean algebraic form as (using + for

- 151 -



JAEA-Conf 2015-002

union, ’ for negation).

b= a=V+a 1
ad = b=b+d (1)

These rules in the union form are then intersected with the existing volume object resulting in
a obviously longer expression, but surprisingly because MNCP(X) calculates only those surfaces
that are required for a particular condition to be determined, this expanded form results in a
slightly faster executable model in MCNP (X).

This object can be further improved by removing unnecessary literals. This is done by
determining the Shannon expansion for all repeated literals (regardless of +/-ve sense). The
Shannon expansion of the literal a gives the logical function in the form: a(A) + o/(B), where
A and B are logical functions without the literal a. In the case, that A = B, literal a can be
removed from the function.

Further optimization could be carried out if 2-factor factorization and weak division of factors
were available and it is expected that this capability will be added soon.

2.3. Model Variables

An essential part of geometric modeling is having control over all the parameters that make
up the model which allows the user to change any parameter without the model becoming
broken. CombLayer tries to ensure this via two mechanisms. The first is that there is a global
database of variables which all have a type and a default value. Variables can be floating point
number, integers, strings or 3D vectors. Those variables can be expressed either as values or
as mathematical functions of other variables or programming constructs. Second, combined
with the FizedComp link points and surfaces, most objects are extremely robust to change of
position and size. If an object is likely to be eliminated then additional code has to be added to
components to deal with this issue, but typical size change can be accommodated by standard
overlap tests and exclusion on all nearby objects.

2.4. Pipework
Adding pipework to a model is such a common requirement that a specific module has been
written to assist in this operation. In CombLayer a pipe is considered as a multi-layered object
that follows a path through the model but has a constant shape form (e.g. cylindrical/square).
The shape can change size (e.g. a pipe going from a small radius to a large radius) but the
shape is considered unchanged. Additionally, the use of simple flags can turn various layers on
and off at each junction.

The pipework is added by starting a pipe relative to a link point or central origin of
a component. Obviously its true starting point can be offset from this link point. Then
further points are defined either by another link point, or by 3D-Vector offsets until the pipe’s
termination point. The pipe is bent at each turn by introducing a dividing plane, even if that
plane produces zero deflection. If the pipe goes through a LayerComp object it may be joined
to each layer in turn [figure 4].

3. Post-Geometry Construction

Once the geometry has been constructed, further processing in necessary to add source terms,
tallies and carry out variance reduction. CombLayer supports most tallies and some source
terms, as currently written. Since CombLayer renumbers surfaces, objects and most object’s
final positions which are dependent on the state of many variables, it takes advantage of the
FizedComp link points, link surfaces and the objectRegister for setting tallies. Additionally, if

- 152 -



JAEA-Conf 2015-002

Figure 4. The pipe join with
a multi-layered moderator. The
requirement is that the moderator
vessel is a LayerComp and the pipe
join flag is set for each of the
pipe/layer intersects. The dividing
planes of each of the pipe segments
can be seen within the join region.

tallies are not set via this mechanism, significant extra effort is required to set up an appropriate
variance reduction mechanism.

The simplest tallies to set up are point tallies. These can be constructed as an offset 3D-
vector distance from any link-point. In addition, they support area-point tallies and windowed
point tallies which are common MCNP(X) modifications. Similarly surface tallies can be set
up if a link-surface is required, although more difficult if not, and cell (flux/heat) tallies can
be added via the objectRegister. Finally, XML tallies can be added for any other tally type or
addition.

3.1. Variance Reduction

There is no complete variance reduction method in CombLayer, rather a number of enablers
to construct a variance reduction system to suit the type of problem being studied. However,
significant effort has been made to enable many appropriate questions to be asked of a geometric
system.

Firstly, it is possible to determine an approximate centre of most objects and components.
This is done by iterating over all the surfaces in an object to determine the triple surface
intersections. Three non-parallel planes will intersect at a point; a cylinder and two planes
typically intersect at two points etc. These points are then summed to a centre of mass if the
point is on a true surface of the object.

The centre object points can be used in a number of ways to help with variance reductions.
The first is via the cell based weight window system. For each cell it is possible to determine
a biased probability to transport to any other cell based on the distance between the centres
and the material in the path between the centres. Following this direct calculation of all object
pairs, a Markov chain method can be used to track the cell to tally position bias for the weight
window value. Different energy values can have different tracking cross sections associated with
them which in turn modify the weight window result. Obviously, this is not a replacement for
full adjoint variance reduction method [5], however it is very fast to use and requires minimal
setup effort.

4. Conclusions

CombLayer is an extensible object-orientated system for building MCNP(X) models. Its main
strength is to allow the rapid construction of complex non-repeating structures such as found
in spallation sources and reactor assemblies. These structures can be linked in simple ways that
allow the size and position of almost any object to change without breaking the model or having
to do additional work to make the model work.

- 153 -



JAEA-Conf 2015-002

It has been used to build full assembly models from proton targets to instrument layouts in
one model which could be rapidly run in a single MCNP(X) model. These models have had
upto 100,000 MCNP(X) objects within them but could still be run effectively.

The code released under the GNU public license GPL3 and is available at
https://github.com/SAnsell/CombLayer.

References

[1] X-5 Monte Calro team 2003 MCNP - A General Monte Carlo N-Particle Transport Code, version 5 Tech. rep.
Los Alamos

[2] Gallmeier F X, Ferguson P D, Iverson E B, Popova I I and Lu W 2006 Nuclear Instruments and Methods in
Physics A 562 946-949

[3] Lu W, Ferguson P D, Iverson E B, Gallmeier F X and Popova I I 2008 Journal of Nuclear Materials 377
268-274

[4] Ansell S 2007 Proceedings of ICANS-XVII pp 660-668

[6] Wagner* J C and Haghighat A 1998 Nuclear Science and Engineering 128 186-208

- 154 -



